menu

Fundamentals of Big Data Network Analysis for Research and Industry
by Hyunjoung Lee and Il Sohn




Overview -

Presents the methodology of big data analysis using examples from research and industry

There are large amounts of data everywhere, and the ability to pick out crucial information is increasingly important. Contrary to popular belief, not all information is useful; big data network analysis assumes that data is not only large, but also meaningful, and this book focuses on the fundamental techniques required to extract essential information from vast datasets.

Featuring case studies drawn largely from the iron and steel industries, this book offers practical guidance which will enable readers to easily understand big data network analysis. Particular attention is paid to the methodology of network analysis, offering information on the method of data collection, on research design and analysis, and on the interpretation of results. A variety of programs including UCINET, NetMiner, R, NodeXL, and Gephi for network analysis are covered in detail.

Fundamentals of Big Data Network Analysis for Research and Industry looks at big data from a fresh perspective, and provides a new approach to data analysis.

This book

  • Explains the basic concepts in understanding big data and filtering meaningful data
  • Presents big data analysis within the networking perspective
  • Features methodology applicable to research and industry
  • Describes in detail the social relationship between big data and its implications
  • Provides insight into identifying patterns and relationships between seemingly unrelated big data

Fundamentals of Big Data Network Analysis for Research and Industry will prove a valuable resource for analysts, research engineers, industrial engineers, marketing professionals, and any individuals dealing with accumulated large data whose interest is to analyze and identify potential relationships among data sets.

  Read Full Product Description
 
local_shippingFor Delivery
Available. Ships in 1-2 weeks.
This item is Non-Returnable.
FREE Shipping for Club Members help
 
storeBuy Online Pickup At Store
search store by zipcode

 
 
New & Used Marketplace 10 copies from $63.18
 
 
 

More About Fundamentals of Big Data Network Analysis for Research and Industry by Hyunjoung Lee; Il Sohn

 
 
 

Overview

Presents the methodology of big data analysis using examples from research and industry

There are large amounts of data everywhere, and the ability to pick out crucial information is increasingly important. Contrary to popular belief, not all information is useful; big data network analysis assumes that data is not only large, but also meaningful, and this book focuses on the fundamental techniques required to extract essential information from vast datasets.

Featuring case studies drawn largely from the iron and steel industries, this book offers practical guidance which will enable readers to easily understand big data network analysis. Particular attention is paid to the methodology of network analysis, offering information on the method of data collection, on research design and analysis, and on the interpretation of results. A variety of programs including UCINET, NetMiner, R, NodeXL, and Gephi for network analysis are covered in detail.

Fundamentals of Big Data Network Analysis for Research and Industry looks at big data from a fresh perspective, and provides a new approach to data analysis.

This book

  • Explains the basic concepts in understanding big data and filtering meaningful data
  • Presents big data analysis within the networking perspective
  • Features methodology applicable to research and industry
  • Describes in detail the social relationship between big data and its implications
  • Provides insight into identifying patterns and relationships between seemingly unrelated big data

Fundamentals of Big Data Network Analysis for Research and Industry will prove a valuable resource for analysts, research engineers, industrial engineers, marketing professionals, and any individuals dealing with accumulated large data whose interest is to analyze and identify potential relationships among data sets.



This item is Non-Returnable.

 

Details

  • ISBN-13: 9781119015581
  • ISBN-10: 1119015588
  • Publisher: Wiley
  • Publish Date: January 2016
  • Page Count: 216
  • Dimensions: 9.1 x 6 x 0.6 inches
  • Shipping Weight: 0.9 pounds


Related Categories

 

BAM Customer Reviews