## Pseudorandom Number Generator by Jesse Russell and Ronald Cohn

Overview -
High Quality Content by WIKIPEDIA articles A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers that approximates the properties of random numbers. The sequence is not truly random in that it is completely determined by a relatively small set of initial values, called the PRNG's state, which includes a truly random seed. Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom numbers are important in practice for their speed in number generation and their reproducibility, and they are thus central in applications such as simulations (e.g., of physical systems with the Monte Carlo method), in cryptography, and in procedural generation. Good statistical properties are a central requirement for the output of a PRNG, and common classes of suitable algorithms include linear congruential generators, lagged Fibonacci generators, and linear feedback shift registers. Cryptographic applications require the output to also be unpredictable, and more elaborate designs, which do not inherit the linearity of simpler solutions, are needed. More recent instances of PRNGs with strong randomness guarantees are based on computational hardness assumptions, and include the Blum Blum Shub, Fortuna, and Mersenne Twister algorithms.

local_shippingFor Delivery
In Stock.
This item is Non-Returnable.
FREE Shipping for Club Members help

## More About Pseudorandom Number Generator by Jesse Russell; Ronald Cohn

### Overview

High Quality Content by WIKIPEDIA articles A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG), is an algorithm for generating a sequence of numbers that approximates the properties of random numbers. The sequence is not truly random in that it is completely determined by a relatively small set of initial values, called the PRNG's state, which includes a truly random seed. Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom numbers are important in practice for their speed in number generation and their reproducibility, and they are thus central in applications such as simulations (e.g., of physical systems with the Monte Carlo method), in cryptography, and in procedural generation. Good statistical properties are a central requirement for the output of a PRNG, and common classes of suitable algorithms include linear congruential generators, lagged Fibonacci generators, and linear feedback shift registers. Cryptographic applications require the output to also be unpredictable, and more elaborate designs, which do not inherit the linearity of simpler solutions, are needed. More recent instances of PRNGs with strong randomness guarantees are based on computational hardness assumptions, and include the Blum Blum Shub, Fortuna, and Mersenne Twister algorithms.

This item is Non-Returnable.

### Details

• ISBN-13: 9785511083391
• ISBN-10: 5511083399
• Publisher: Book on Demand Ltd.
• Publish Date: January 2013
• Page Count: 82
• Dimensions: 11 x 8.25 x 0.17 inches
• Shipping Weight: 0.45 pounds

Related Categories