menu

Self-Organizing Maps
by Teuvo Kohonen




Overview -
Since the second edition of this book came out in early 1997, the number of scientific papers published on the Self-Organizing Map (SOM) has increased from about 1500 to some 4000. Also, two special workshops dedicated to the SOM have been organized, not to mention numerous SOM sessions in neural- network conferences. In view of this growing interest it was felt desirable to make extensive revisions to this book. They are of the following nature. Statistical pattern analysis has now been approached more carefully than earlier. A more detailed discussion of the eigenvectors and eigenvalues of symmetric matrices, which are the type usually encountered in statistics, has been included in Sect. 1.1.3: also, new probabilistic concepts, such as factor analysis, have been discussed in Sect. 1.3.1. A survey of projection methods (Sect. 1.3.2) has been added, in order to relate the SOM to classical paradigms. Vector Quantization is now discussed in one main section, and derivation of the point density of the codebook vectors using the calculus of variations has been added, in order to familiarize the reader with this otherwise com- plicated statistical analysis. It was also felt that the discussion of the neural-modeling philosophy should include a broader perspective of the main issues. A historical review in Sect. 2.2, and the general philosophy in Sects. 2.3, 2.5 and 2.14 are now expected to especially help newcomers to orient themselves better amongst the profusion of contemporary neural models.

  Read Full Product Description
 
local_shippingFor Delivery
In Stock.
This item is Non-Returnable.
FREE Shipping for Club Members help
 
storeBuy Online Pickup At Store
search store by zipcode

 
 
New & Used Marketplace 5 copies from $165.17
 
 
 

More About Self-Organizing Maps by Teuvo Kohonen

 
 
 

Overview

Since the second edition of this book came out in early 1997, the number of scientific papers published on the Self-Organizing Map (SOM) has increased from about 1500 to some 4000. Also, two special workshops dedicated to the SOM have been organized, not to mention numerous SOM sessions in neural- network conferences. In view of this growing interest it was felt desirable to make extensive revisions to this book. They are of the following nature. Statistical pattern analysis has now been approached more carefully than earlier. A more detailed discussion of the eigenvectors and eigenvalues of symmetric matrices, which are the type usually encountered in statistics, has been included in Sect. 1.1.3: also, new probabilistic concepts, such as factor analysis, have been discussed in Sect. 1.3.1. A survey of projection methods (Sect. 1.3.2) has been added, in order to relate the SOM to classical paradigms. Vector Quantization is now discussed in one main section, and derivation of the point density of the codebook vectors using the calculus of variations has been added, in order to familiarize the reader with this otherwise com- plicated statistical analysis. It was also felt that the discussion of the neural-modeling philosophy should include a broader perspective of the main issues. A historical review in Sect. 2.2, and the general philosophy in Sects. 2.3, 2.5 and 2.14 are now expected to especially help newcomers to orient themselves better amongst the profusion of contemporary neural models.


This item is Non-Returnable.

 

Details

  • ISBN-13: 9783540679219
  • ISBN-10: 3540679219
  • Publisher: Springer
  • Publish Date: November 2000
  • Page Count: 502
  • Dimensions: 9.21 x 6.14 x 1.07 inches
  • Shipping Weight: 1.62 pounds

Series: Springer Information Sciences #30

Related Categories

 

BAM Customer Reviews